Tests of Limiters for Discontinuous Galerkin Advection Algorithms

Seth Davidovits¹, Ammar Hakim², Greg Hammett²

¹Department of Astrophysical Sciences, Princeton University, Princeton, NJ ²Princeton Plasma Physics Laboratory, Princeton, NJ

Problem

- Continuum kinetic plasma simulations need to maintain positivity and monotonicity of the distribution function for a physical solution
- This requires the introduction of *limiters* to the simulations
- Here, we investigate the utility of various limiters for the Discontinuous Galerkin (DG) method, a highly parallelizable and efficient technique with many recent developments

Plasma edge: A tricky place

- Plasma edge presents simulation challenges
 - Large density/amplitude variations, large relative banana width, wide range of collisionalities
 - Stick with full-F simulations
 - Need good limiters to ensure positivity, many algorithms produce oscillations at large gradients (Gibb's phenomenon)
 - Small charge imbalances lead to large fields
 - Need to ensure particle conservation exactly
 - Algorithm also needs to minimize artificial dissipation (some is OK as a subgrid model)

Test problem: advection

$$\frac{\partial}{\partial t}f(x,t) = -\frac{\partial}{\partial x}(vf)$$

- Paradigm problem on algorithm subtleties thousands of papers written on this equation and extensions across many application domains (climate, CFD, architecture, astrophysics, nanotech/MEMS and more)
- Surprisingly tricky to get a robust, efficient, high order accurate solution with desired conservation and monotonicity/positivity properties
- Exact solution for constant v: translation

$$f(x,t) = f_0(x - vt)$$

DG Algorithm

• Multiply the equation by a test function and integrate over one cell

$$\int_{\Omega_{j}} \frac{\partial f}{\partial t} \phi_{h} dx = \int_{\Omega_{j}} (vf) \frac{\partial \phi_{h}}{\partial x} dx - \left[\hat{F} \left(f^{-}, f^{+} \right)_{x} \phi_{h} \left(x \right) \right]_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}^{-}}$$

- $\hat{F}(f^-, f^+)$ is a numerical flux
- Expand f as polynomial: $f_j(x,t) = \sum_{k=0}^{N} f_j^k(t) P^k(x)$
- Pick suitable test function (usually same basis as for f), and numerical flux
- Gives equations for polynomial weight time evolution

Typical DG solution

 Advection equation simulated for one revolution, Lagrange basis for polynomials, 3rd order polynomials in each cell (5th order accuracy due to DG superconvergence)

- Negative values, oscillations around the discontinuity typical of high order methods without limiters
- Otherwise good in smooth regions, low dissipation, conservative (all DG)

Limiting

 Need to determine restrictions on local polynomial coefficients to keep solution nonoscillatory

1st order polynomial example:

Want:

(From R J Leveque, 2002)

Minmod

Basic limiter for first order reconstruction
 & building block for advanced limiters

$$\hat{f_j^1} = minmod\left(f_j^1, \frac{f_{j+1}^0 - f_j^0}{(\Delta x/2)}, \frac{f_j^0 - f_{j-1}^0}{(\Delta x/2)}\right)$$

$$\operatorname{minmod}(a,b,c) = \left\{ \begin{array}{ll} s \min(|a|,|b|,|c|) \text{ if } s = \operatorname{sign}(a) = \operatorname{sign}(b) = \operatorname{sign}(c) \\ 0 & \text{otherwise} \end{array} \right.$$

Clips extrema, somewhat diffusive

Minmod

Basic limiter for first order reconstruction
 & building block for advanced limiters

$$\hat{f_j^1} = minmod\left(f_j^1, \frac{f_{j+1}^0 - f_j^0}{(\Delta x/2)}, \frac{f_j^0 - f_{j-1}^0}{(\Delta x/2)}\right)$$

$$\operatorname{minmod}(a,b,c) = \left\{ \begin{array}{ll} s \min(|a|,|b|,|c|) \text{ if } s = \operatorname{sign}(a) = \operatorname{sign}(b) = \operatorname{sign}(c) \\ 0 & \text{otherwise} \end{array} \right.$$

DG solution with minmod

• Implemented incorrectly for DG in some literature (e.g. Nair, Levy, Lauritzen)

DG solution incorrect minmod

Positivity preservation

- Possible to design limiters that enforce the less restrictive condition of positivity, rather than monotonicity
 - E.g. Zhang & Shu maximum principle limiter

- Idea is to scale polynomials within a cell so that interpolated values used in the DG scheme never exceed [0,Max]
- Preserves positivity and smooth extrema is *not clipped*, but also allows oscillations to be generated in the solution

High order limiters

 DG moment limiter uses a recursive minmod approach – use minmod on highest polynomial moment, recurse to next highest moment if previous one limited by minmod

- Appears to maintain high order accuracy near smooth extrema and no oscillations generated
- Expensive to extend this limiter to high dimensions (Krivodonova, 2007)

Non-clipping limiters

- Recent advances in non-clipping limiters for finite volume schemes e.g. XPPM, Collela & Sekora 2008
- Detect discontinuities (allowed for hyperbolic problems), revert to low order in non smooth regions, introduce minimum diffusion to preserve monotonicity

Non-clipping limiters

• In finite volume methods, information from three adjacent cells is not sufficient to distinguish smooth extremum from a discontinuity.

Future work

- A number of recent papers work on extending moment style limiters to unstructured meshes and high dimensions without compromising computation efficiency
 - Investigate these approaches for their usefulness on edge plasma related test problems
- Can the recent developments in non-clipping finite volume limiters be converted into techniques for high-order, efficient DG limiters?

Acknowledgments

This work was supported by DOE CSGF under grant number DE-FG02-97ER235308 and the Princeton Plasma Physics Laboratory.

References

- R. J. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press (2002)
- Ramachandran D. Nair, Michael N. Levy and Peter H. Lauritzen, Emerging numerical methods for atmospheric modeling, Springer (2011)
- Xiangxiong Zhang & Ch-Wang Shu, Maximum-principle-satisfying and positivity-preserving high-rder schemes for conservation laws: survey and new developments, Proc. R. Soc. A 8 October 2011 vol. 467
- Rupak Biswas, Karen D. Devine, Joseph E. Flaherty, Parallel, Adaptive Finite Element Methods for Conservation Laws, Applied Numerical Mathematics, 14 (1994) 255-283
- Krivodonova, Limiters for high-order discontinuous Galerkin methods, . Comput. Phys. 226(2007), pp. 879-896
- J. L. Peterson and G. W. Hammett, Positivity Preservation and Advection Algorithm Tests for Edge Plasma Turbulence, submitted to SIAM J. Sci. Computing (2012)